حکمرانی بر بستر هوش مصنوعی

نوع مقاله : مقاله مروری

نویسنده

استادیار اقتصاد، دانشکده مطالعات جهان، دانشگاه تهران، تهران، ایران

چکیده

هدف این مطالعه شناسایی پیوند هوش مصنوعی با سیاستگذاری عمومی و نقش آن در بهبود کیفیت حکمرانی است می‌باشد. این مطالعه به روش مروری و تطبیقی به مطالعه تجربه کشورهایی می‌پردازد که از هوش مصنوعی در فرآیندهای سیاستگذاری و ارائه خدمات عمومی استفاده کرده‌اند تا از این رهگذر، یک چارچوب تحلیلی اولیه‌ای ترسیم نماید که بتواند به توضیح نقش هوش مصنوعی در کیفیت حکمرانی کمک کند. نتایج به‌دست آمده نشان می‌دهد که هوش مصنوعی در دو بعد 1) افزایش پویایی و تعامل چرخه سیاستگذاری عمومی در مراحل مختلف سیاستگذاری عمومی و 2) بهبود کیفیت خدمات دولتی و کارایی دستگاه اداری، بر کیفیت حکمرانی تأثیر می‌گذارد.

کلیدواژه‌ها


  1. Bannister, F., & Connolly, R. (2014). ICT, public values and transformative government: A framework and programme for research. Government information quarterly, 31(1), 119-128. https://doi.org/10.1016/j.giq.2013.06.002
  2. Baraniuk, C. (2015). Earthquake artificial intelligence knows where damage is worst. New Scientist, 3041.
  3. Barth, T. J., & Arnold, E. (1999). Artificial Intelligence and Administrative Discretion: Implications for Public Administration. The American Review of Public Administration, 29(4), 332-351. https://doi.org/10.1177/02750749922064463
  4. Bekkers, V., & Edwards, A. (2016). Legitimacy and democracy: A conceptual framework for assessing governance practices. In Governance and the democratic deficit (pp. 35-60). Routledge.
  5. Birkland, T. A. (2019). An introduction to the policy process: Theories, concepts, and models of public policy making. Routledge.
  6. Buchanan, Bruce G. A (Very) Brief History of Artificial Intelligence, AI Magazine, Vol. 26 No. 4: Winter 2005, pp.53-60, https://doi.org/10.1609/aimag.v26i4.1848
  7. Chapter, I. V., Rich, E., Knight, K., & Nair, S. (2009). Artificial Intelligence. Tata McGraw Hill.
  8. Charron, N., & Lapuente, V. (2010). Does democracy produce quality of government? European journal of political research, 49(4), 443-470. DOI: 10.1111/j.1475-6765.2009.01906.x
  9. Cleary, D., & Tax, R. I. (2011). Predictive analytics in the public sector: Using data mining to assist better target selection for audit. In Proceedings of the European Conference on e-Government, ECEG, Vol. 9, No. 2, pp. 168-176.
    1. Cordella, A., & Tempini, N. (2015). E-government and organizational change: Reappraising the role of ICT and bureaucracy in public service delivery. Government information quarterly, 32(3), 279-286.
    2. De Graaf, G., & Paanakker, H. (2015). Good governance: Performance values and procedural values in conflict. The American review of public administration, 45(6), 635-652, DOI: 10.1177/0275074014529361
    3. Diamond, L. (2007). A quarter-century of promoting democracy. Journal of Democracy, 18(4), 118-120, DOI: 10.1353/jod.2007.0064
    4. Dunleavy, P., Margetts, H., Bastow, S., & Tinkler, J. (2006). New public management is dead—long live digital-era governance. Journal of public administration research and theory, 16(3), 467-494, DOI: 10.1093/jopart/mui057
    5. Fukuyama, F. (2013). What is governance? Governance, 26(3), 347-368, https://dx.doi.org/10.2139/ssrn.2226592
    6. Gasser, U., & Almeida, V. A. (2017). A layered model for AI governance. IEEE Internet Computing, 21(6), 58-62.
    7. Government AI Readiness Index 2023, https://oxfordinsights.com/ai-readiness/ai-readiness-index/
    8. Maragno, G., Tangi, L., Gastaldi, L., & Benedetti, M. (2023). Exploring the factors, affordances and constraints outlining the implementation of Artificial Intelligence in public sector organizations. International Journal of Information Management, 73, 10, https://doi.org/10.1016/j.ijinfomgt.2023.102686
    9. Haesevoets, T., Verschuere, B., Van Severen, R., & Roets, A. (2024). How do citizens perceive the use of Artificial Intelligence in public sector decisions?. Government Information Quarterly, 41(1), 101906, https://doi.org/10.1016/j.giq.2023.101906
    10. Harwich, E., & Laycock, K. (2018). Thinking on its own: AI in the NHS. Reform Research Trust.
    11. Höchtl, J., Parycek, P., & Schöllhammer, R. (2016). Big data in the policy cycle: Policy decision making in the digital era. Journal of Organizational Computing and Electronic Commerce, 26(1-2), 147-169, DOI: 10.1080/10919392.2015.1125187
    12. https://coronavirus.jhu.edu
    13. https://www.theguardian.com/us-news/2016/may/26/fbi-intelligence-senate-bill-warrants-data-access
    14. Hung, T. W., & Yen, C. P. (2021). On the person-based predictive policing of AI. Ethics and Information Technology, 23, 165-176, DOI: 10.1007/s10676-020-09539-x
    15. Isham, J., Kaufmann, D., & Pritchett, L. H. (1997). Civil liberties, democracy, and the performance of government projects. The World Bank Economic Review, 11(2), 219-242, DOI: 10.1093/wber/11.2.219
    16. Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications.
    17. Jann, W., & Wegrich, K. (2017). Theories of the policy cycle. In Handbook of public policy analysis (pp. 69-88). Routledge.
    18. Jarmin, R. S., & O'Hara, A. B. (2016). Big data and the transformation of public policy analysis. Journal of Policy Analysis and Management, 35(3), 715-721, DOI: 10.1002/pam.21925
    19. Kaufmann, D., Kraay, A., & Mastruzzi, M. (2011). The worldwide governance indicators: Methodology and analytical issues1. Hague journal on the rule of law, 3(2), 220-246, DOI: 10.1017/S1876404511200046
    20. Khan, J. R., Saeed, M., Siddiqui, F. A., Mahmood, N., & Arifeen, Q. U. (2019). PREDICTIVE POLICING: A Machine Learning Approach to Predict and Control Crimes in Metropolitan Cities. University of Sindh Journal of Information and Communication Technology, 3(1), 17-26.
    21. Lazer, D. (2015). The rise of the social algorithm. Science, 348(6239), 1090-1091, DOI: 10.1126/science.aab1422
    22. Lee, Keon (2021), China's Technological Leapfrogging and Economic Catch-up, Translated by Roohollah Kohnhoosh Nejad. Tehran: Development and Foresight Research Center of the National Program and Budget Organization.
    23. Marda, V. (2018). Artificial intelligence policy in India: a framework for engaging the limits of data-driven decision-making. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180087, DOI: 10.1098/rsta.2018.0087
    24. McCullough, A. (2015). The legitimacy of states and armed non-state actors: Topic guide. Birmingham, University of Birmingham.
    25. Mikalef, P., Fjørtoft, S.O., Torvatn, H.Y. (2019). Artificial Intelligence in the Public Sector: A Study of Challenges and Opportunities for Norwegian Municipalities. In: Pappas, I.O., Mikalef, P., Dwivedi, Y.K., Jaccheri, L., Krogstie, J., Mäntymäki, M. (eds) Digital Transformation for a Sustainable Society in the 21st Century. I3E 2019. Lecture Notes in Computer Science, vol 11701. Springer, Cham. https://doi.org/10.1007/978-3-030-29374-1_22
    26. Morandín-Ahuerma, F. Recommendation of the OECD council on artificial intelligence: inequality and inclusion1. https://www.researchgate.net/profile/Fabio-Morandin-Ahuerma/publication/374508986_Recommendation_of_the_OECD_council_on_artificial_intelligence_inequality_and_inclusion/links/6520d835fc5c2a0c3bbe316e/Recommendation-of-the-OECD-council-on-artificial-intelligence-inequality-and-inclusion.pdf
    27. Mudde, C., & Kaltwasser, C. R. (2017). Populism: A very short introduction. Oxford University Press.
    28. Orlikowski, W. J., & Iacono, C. S. (2001). Research commentary: Desperately seeking the “IT” in IT research—A call to theorizing the IT artifact. Information systems research, 12(2), 121-134, https://doi.org/10.1287/isre.12.2.121.9700
    29. Osoba, O., & Welser, W. (2017). The Risks of Bias and Errors in Artificial Intelligence. Santa Monica: Rand Corporation.
    30. Pencheva, I., Esteve, M., & Mikhaylov, S. J. (2020). Big Data and AI–A transformational shift for government: So, what next for research? Public Policy and Administration, 35(1), 24-44, DOI: 10.1177/0952076718780537
    31. Poole, D. I., Goebel, R. G., & Mackworth, A. K. (1998). Computational intelligence (Vol. 1). New York: Oxford University Press.
    32. Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence: foundations of computational agents. Cambridge University Press.
    33. Pülzl, H., & Treib, O. (2017). Implementing public policy. In Handbook of public policy analysis (pp. 115-134). Routledge.
    34. Radulescu, M., Logica, B., & Zamfiroiu, T. (2015). Forecasting public expenditure by using feed-forward neural networks. Economic research-Ekonomska istraživanja, 28(1), 668-686, DOI: 10.1080/1331677X.2015.1081828
    35. Riahi, Y., & Riahi, S. (2018). Big data and big data analytics: Concepts, types and technologies. International Journal of Research and Engineering, 5(9), 524-528, DOI: 10.21276/ijre.2018.5.9.5
    36. Rivera‐Batiz, F. L. (2002). Democracy, governance, and economic growth: theory and evidence. Review of Development Economics, 6(2), 225-247, DOI: 10.1111/1467-9361.00151
    37. Rothstein, B. O., & Teorell, J. A. (2008). What is quality of government? A theory of impartial government institutions. Governance, 21(2), 165-190, DOI: 10.1111/j.1468-0491.2008.00391.x
    38. Russell, Stuart J. & Norvig, Peter (2010), Artificial Intelligence a Modern Approach, Third Edition, Pearson Education, Inc.
    39. Saha, S. (2008, July). Democracy and corruption: an empirical analysis in a cross-country framework. In New Zealand Association of Economist Annual Conference (pp. 9-11).
    40. Savage, M. (2019). Meet Tengai, the job interview robot who won't judge you. BBC Oline, 12.
    41. Scharpf, F. (2011). Governing in Europe: Effective and democratic? online edn, Oxford Academic, https://doi.org/10.1093/acprof:oso/9780198295457.001.0001
    42. Schintler, L. A., & Kulkarni, R. (2014). Big data for policy analysis: The good, the bad, and the ugly. Review of Policy Research, 31(4), 343-348, DOI: 10.1111/ropr.12079
    43. Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368-383, https://doi.org/10.1016/j.giq.2018.09.008
    44. Tito, J. (2017). Destination unknown: Exploring the impact of artificial intelligence on government. Centre for Public Impact. Disponível em: https://www. centreforpublicimpact. org/assets/documents/Destination-Unknown-AI-and-government. pdf. Acesso em, 27.
    45. Valle-Cruz, D. (2019). Public value of e-government services through emerging technologies. International Journal of Public Sector Management, 32(5), 530-545, DOI: 10.1108/IJPSM-03-2018-0072
    46. Valle-Cruz, D., Criado, J. I., Sandoval-Almazán, R., & Ruvalcaba-Gomez, E. A. (2020). Assessing the public policy-cycle framework in the age of artificial intelligence: From agenda-setting to policy evaluation. Government Information Quarterly, 37(4), 101509, DOI: 10.1016/j.giq.2020.101509
    47. Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37, DOI: https://doi.org/10.2478/jagi-2019-0002
    48. Wirtz, B. W., Weyerer, J. C., & Kehl, I. (2022). Governance of artificial intelligence: A risk and guideline-based integrative framework. Government Information Quarterly, 39(4), 101685, https://doi.org/10.1016/j.giq.2022.101685
    49. Yogesh K. Dwivedi, Laurie Hughes, Elvira Ismagilova, Gert Aarts, Crispin Coombs, Tom Crick, Yanqing Duan, Rohita Dwivedi, John Edwards, Aled Eirug, Vassilis Galanos, P. Vigneswara Ilavarasan, Marijn Janssen, Paul Jones, Arpan Kumar Kar, Hatice Kizgin, Bianca Kronemann, Banita Lal, Biagio Lucini, Rony Medaglia, Kenneth Le Meunier-FitzHugh, Leslie Caroline Le Meunier-FitzHugh, Santosh Misra, Emmanuel Mogaji, Sujeet Kumar Sharma, Jang Bahadur Singh, Vishnupriya Raghavan, Ramakrishnan Raman, Nripendra P. Rana, Spyridon Samothrakis, Jak Spencer, Kuttimani Tamilmani, Annie Tubadji, Paul Walton, Michael D. Williams, Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy, International Journal of Information Management, Volume 57, 2021, 101994, https://doi.org/10.1016/j.ijinfomgt.2019.08.002