طراحی بسته سیاستی برای توسعه هوش مصنوعی در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مدیریت فناوری اطلاعات دانشکدگان فارابی دانشگاه تهران، قم، ایران

2 استادیار مدیریت دانشکدگان فارابی دانشگاه تهران، قم، ایران

3 دانشیار مدیریت دانشگاه تهران، تهران، ایران

چکیده

پژوهش حاضر با استفاده از روش تحقیق آمیخته، با بررسی 25 سند ملی و بین‌المللی رسمی منتشر شده در حوزه سیاستگذاری هوش مصنوعی در جهان و مصاحبه با خبرگان فعال در بخش‌های مختلف زیست‌بوم هوش مصنوعی، به دنبال طراحی بسته سیاستی مناسب برای توسعه هوش مصنوعی در ایران بوده است. این پژوهش با بهره‌گیری از روش‌های تحلیل مضامین و مدل تصمیم‌گیری چندمعیاره فازی اقدام به کشف مهم‌ترین اهداف سیاستی و اولویت‌بندی آن‌ها و همچنین اولویت‌بندی ابزارهای سیاستی برای نیل به هر یک از این اهداف نموده است. نتایج نشان می‌دهد که مهم‌ترین اهداف توسعه هوش مصنوعی در کشور به ترتیب اولویت، عبارتند از: رشد اقتصادی، ارتقای سرمایه انسانی، بهبود زیرساخت‌ها، افزایش رفاه و بهبود خدمات عمومی و ارتقای ظرفیت‌های پژوهشی. همچنین مهم‌ترین ابزارهای سیاستی برای نیل به اهداف سیاستی مورد بحث نیز، به ترتیب اولویت، 7 ابزار سیاستی مقررات‌گذاری و تنظیم‌گری، تأمین مالی تحقیق و توسعه، فرهنگ‌سازی و آموزش، شبکه‌سازی، تحریک تقاضای بازار، خرید دولتی و خدمات مشاوره‌ای/ شتاب‌دهی هستند.

کلیدواژه‌ها


  1. Ali Ahmadi, A., Ghazinoori, S. (2008). Prioritizing policy instruments for supporting new technology-based firms in Iran, using a fuzzy MCDM model. Journal of Science and Technology Policy, 1(3), 73-79. {In Persian}.
  2. Alizadeh, P., Ghazinoory, S., Amiri, M., Ghazinoori, S. (2018). Designing a Policy Mix to Enhance the Business Expenditure on Research and Development (R&D) in Iran. Journal of Management Improvement, 12(3), 1-24. {In Persian}.
  3. Alizadeh, P., Malekifar, F. (2019). Policy Mixes for Science, Technology, and Innovation. Journal of Science and Technology Policy, 12(2), 513-526. {In Persian}.
  4. Amiri, S., Nikkam, N., Sahebinejad, M. (2008). Statistical Survey of Nanotechnology related Patents as an Indicator of Nanotechnology Creation. Journal of Science and Technology Policy, 1(3), 1-13. {In Persian}.
  5. Attride-Stirling, J. (2001). Thematic Networks: An Analytic Tool for Qualitative Qualitative Research, Vol. 1, No. 3, Pp. 385-405.
  6. Bikar, V., Carpon, H., & Cincera, M. (2004). An integrated evaluation scheme of innovation systems from an institutional perspective.
  7. Borrás, S., & Edquist, C. (2013). The choice of innovation policy instruments. Technological forecasting and social change, 80(8), 1513-1522.
  8. Bostrom, N., Dafoe, A., & Flynn, C. (2019). Policy Desiderata for Superintelligent AI. Oxford (Version 4.3, 2018).
  9. Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, Vol. 3, No. 2, Pp. 77-101.
  10. Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., ... & Anderljung, M. (2020). Toward trustworthy AI development. arXiv preprint arXiv:2004.07213. ‏
  11. Calo, R. (2017). Artificial Intelligence policy: a primer and roadmap. UCDL Rev., 51, 399. ‏
  12. Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. EJOR.
  13. Chen, J. F., Hsieh, H. N., & Do, Q. H. (2015). Evaluating teaching performance based on fuzzy AHP and comprehensive evaluation approach. Applied Soft Computing, 28, 100-108.
  14. Clark, J., & Guy, K. (1997). Innovation and competitiveness. Technopolis.
  15. Cunningham, P., & Ramlogan, R. (2016). The impact of innovation networks. Handbook of Innovation Policy Impact; 279-317. Edward Elgar Publishing.
  16. Dafoe, A. (2018). AI governance: a research agenda. Governance of AI Program. Future of Humanity Institute, University of Oxford: Oxford, UK; 1442-1443. ‏
  17. Edler, J., Gök, A., Cunningham, P., & Shapira, P. (2016). Introduction: Making sense of innovation policy. In Handbook of Innovation Policy Impact. Edward Elgar Publishing.
  18. European commission. (2003). Annual Innovation Policy Trends and Appraisal Report for Turkey, A publication from the innovation/SMEs Program.
  19. Fartash, K., Mohseni Kiasari, M., & Mesma Khosroshahi, E. (2021). Analyzing Policy Instruments Used in Technological Collaboration of 3 Large Firms with Small Technology-based Firms. Journal of Science & Technology Policy, 14(3), 1-18. {In Persian}.
  20. Flanagan, K., Elvira, U., and Manuel, L. (2011). The ‘policy mix’for innovation: rethinking innovation policy in a multi-level. Research Policy 40.5: 702-713.
  21. Freeman, C. 1987. Technology and economic performance: Lessons from Japan. London: Pinter.
  22. Ghazinoori, S., Ghazinoori, S. (2012). Science and technology policy in the form of general and specific policies. Rahyaft, 22(50), -.{In Persian}.
  23. Ghazinoori, S., Radaei, N. (2019). The Framework for STI Policy Programs. Journal of Science and Technology Policy, 12(2), 527-542. {In Persian}.
  24. Givoni, M., Macmillen, J., Banister, D., & Feitelson, E. (2013). From policy measures to policy packages. Transport Reviews, 33(1), 1-20. ‏
  25. Holdren, J.P.; Bruce, A.; Felten, E.; Lyons, T.; Garris, M. (2016). Preparing for the future of AI. US National Science and Technology Council.
  26. Howlett, M., & Rayner, J. (2013). Patching vs packaging in policy formulation: Assessing policy portfolio design. Politics and Governance. 1(2), 170-182. ‏
  27. Hughes, J.J. (2007). Global technology regulation and potentially apocalyptic technological threats. In Nanoethics. John Wiley: Hoboken, NJ, USA. pp. 201–214.
  28. (2019). Global AI Talent Report 2020. Available at: Link
  29. Joy, B. (2000). Why the future doesn’t need us. Wired 2000, 8, 238–263
  30. Kergroach, S., Meissner, D., & Vonortas, N. S. (2018). Technology transfer and commercialisation by universities and PRIs. Economics of Innovation and New Technology, 27(5-6), 510-530. ‏
  31. Lundvall, B. (1992). National Systems of Innovation: Towards a Theory of Innovation and Interactive Learning. London: Pinter Publishers.
  32. Majaski, C. (2022). Understanding a Developed Economy.Investopedia. Available at: Link
  33. (2021). Iran in the mirror of the artificial. Available at: Link.{In Persian}.
  34. Meissner, D., & Kergroach, S. (2021). Innovation policy mix: mapping and measurement. The Journal of Technology Transfer, 46(1), 197-222. ‏
  35. Mohammadi, D., Salimifard, K., Yousefi, S. (2014). Investigating the performance of the most common multi-criteria decision making. Journal of Operational Research in its Applications. 11(1), 65-84. {In Persian}.
  36. Mohseni Kiasari, M., Mohammadi, M., Jafarnejad, A., Garousi Mokhtarzadeh, N., & Asadifard, R. (2017). Classification of Demand-based Innovation Policy Tools Using Meta-Synthesis Approach. Innovation Management Journal, 6(2), 109-138. {In Persian}.
  37. Müller, V. C., & Bostrom, N. (2016). Future progress in artificial intelligence: A survey of expert opinion. In Fundamental issues of artificial intelligence. Springer, Cham. ‏555-572.
  38. Nasiri, H., Radaei, N. (2019). Classification and Choice of Science, Technology and Innovation Policy Instruments. Journal of Science and Technology Policy, 12(2), 495-511. {In Persian}.
  39. Noroozi Chakoli, A., & Madadi, Z. (2015). Impact of economic power on science and technology situation of countries and the analyzing of their cross-relations. Scientometrics Research Journal, 1(2), 1-14. doi: 10.22070/rsci.2016.379. {In Persian}.
  40. (2019). Going Digital: Shaping Policies, Improving Lives, OECD Publishing, Paris.
  41. (2020). OECD Digital Economy Outlook 2020, OECD Publishing.
  42. Pakzad, M., Ghazinoori, S., & Mohammadi, M. (2020). Designing a Smart Specialization Model for Innovation Development in the Provinces of Iran: Case Study of East Azerbaijan Province. Strategic Management Researches, 26(78), 73-98. {In Persian}.
  43. (2017). Sizing the prize: PwC’s Global Artificial Intelligence Study: Exploiting the AI Revolution. Available at: Link
  44. Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process? European Journal of Operational Research, 48(1), 9-26. http://dx.doi.org/10.1016/0377- 2217(90)90057-I
  45. Seyedan, M. (2019). Developing STI Policies for developing countries: Conceptual model and comparative analysis. Journal of Industry and University, 27(), 13-26. {In Persian}.
  46. Siau, K., & Wang, W. (2018). Building trust in AI, machine learning, and robotics. Cutter Business Technology Journal, 31(2), 47–53.
  47. Sirisawat, P., & Kiatcharoenpol, T. (2018). Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Computers & Industrial Engineering, 117, 303-318
  48. (2022). The Global AI Index - Tortoise. Available at: Link
  49. (2022). Human Development Index (HDI). Available at: Link
  50. Zanjirchi, N. (2011). Fuzzy Hierarchy Analysis Process. Sanei Publications. {In Persian}.
  51. Zhang, D et all. (2021). The AI Index 2021 Annual Report,” AI Index Steering Committee, Human-Centered AI Institute, Stanford University.