The purpose of this study is to identify the link between artificial intelligence and public policy and its role in improving the quality of governance. Using review and comparative method, this paper studies the experience of countries that have used artificial intelligence in policy-making and public service delivery processes, and from this point of view, draw an initial analytical framework that can help explain the role of artificial intelligence in the quality of governance. The results show that artificial intelligence affects the quality of governance from two dimensions: 1) increasing the dynamics and interaction of the public policy cycle in different stages and 2) improving the quality of government services and the efficiency of the administrative apparatus.
Bannister, F., & Connolly, R. (2014). ICT, public values and transformative government: A framework and programme for research. Government information quarterly, 31(1), 119-128. https://doi.org/10.1016/j.giq.2013.06.002
Baraniuk, C. (2015). Earthquake artificial intelligence knows where damage is worst. New Scientist, 3041.
Barth, T. J., & Arnold, E. (1999). Artificial Intelligence and Administrative Discretion: Implications for Public Administration. The American Review of Public Administration, 29(4), 332-351. https://doi.org/10.1177/02750749922064463
Bekkers, V., & Edwards, A. (2016). Legitimacy and democracy: A conceptual framework for assessing governance practices. In Governance and the democratic deficit (pp. 35-60). Routledge.
Birkland, T. A. (2019). An introduction to the policy process: Theories, concepts, and models of public policy making. Routledge.
Buchanan, Bruce G. A (Very) Brief History of Artificial Intelligence, AI Magazine, Vol. 26 No. 4: Winter 2005, pp.53-60, https://doi.org/10.1609/aimag.v26i4.1848
Chapter, I. V., Rich, E., Knight, K., & Nair, S. (2009). Artificial Intelligence. Tata McGraw Hill.
Charron, N., & Lapuente, V. (2010). Does democracy produce quality of government? European journal of political research, 49(4), 443-470. DOI: 10.1111/j.1475-6765.2009.01906.x
Cleary, D., & Tax, R. I. (2011). Predictive analytics in the public sector: Using data mining to assist better target selection for audit. In Proceedings of the European Conference on e-Government, ECEG, Vol. 9, No. 2, pp. 168-176.
Cordella, A., & Tempini, N. (2015). E-government and organizational change: Reappraising the role of ICT and bureaucracy in public service delivery. Government information quarterly, 32(3), 279-286.
De Graaf, G., & Paanakker, H. (2015). Good governance: Performance values and procedural values in conflict. The American review of public administration, 45(6), 635-652, DOI: 10.1177/0275074014529361
Diamond, L. (2007). A quarter-century of promoting democracy. Journal of Democracy, 18(4), 118-120, DOI: 10.1353/jod.2007.0064
Dunleavy, P., Margetts, H., Bastow, S., & Tinkler, J. (2006). New public management is dead—long live digital-era governance. Journal of public administration research and theory, 16(3), 467-494, DOI: 10.1093/jopart/mui057
Fukuyama, F. (2013). What is governance? Governance, 26(3), 347-368, https://dx.doi.org/10.2139/ssrn.2226592
Gasser, U., & Almeida, V. A. (2017). A layered model for AI governance. IEEE Internet Computing, 21(6), 58-62.
Maragno, G., Tangi, L., Gastaldi, L., & Benedetti, M. (2023). Exploring the factors, affordances and constraints outlining the implementation of Artificial Intelligence in public sector organizations. International Journal of Information Management, 73, 10, https://doi.org/10.1016/j.ijinfomgt.2023.102686
Haesevoets, T., Verschuere, B., Van Severen, R., & Roets, A. (2024). How do citizens perceive the use of Artificial Intelligence in public sector decisions?. Government Information Quarterly, 41(1), 101906, https://doi.org/10.1016/j.giq.2023.101906
Harwich, E., & Laycock, K. (2018). Thinking on its own: AI in the NHS. Reform Research Trust.
Höchtl, J., Parycek, P., & Schöllhammer, R. (2016). Big data in the policy cycle: Policy decision making in the digital era. Journal of Organizational Computing and Electronic Commerce, 26(1-2), 147-169, DOI: 10.1080/10919392.2015.1125187
Hung, T. W., & Yen, C. P. (2021). On the person-based predictive policing of AI. Ethics and Information Technology, 23, 165-176, DOI: 10.1007/s10676-020-09539-x
Isham, J., Kaufmann, D., & Pritchett, L. H. (1997). Civil liberties, democracy, and the performance of government projects. The World Bank Economic Review, 11(2), 219-242, DOI: 10.1093/wber/11.2.219
Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications.
Jann, W., & Wegrich, K. (2017). Theories of the policy cycle. In Handbook of public policy analysis (pp. 69-88). Routledge.
Jarmin, R. S., & O'Hara, A. B. (2016). Big data and the transformation of public policy analysis. Journal of Policy Analysis and Management, 35(3), 715-721, DOI: 10.1002/pam.21925
Kaufmann, D., Kraay, A., & Mastruzzi, M. (2011). The worldwide governance indicators: Methodology and analytical issues1. Hague journal on the rule of law, 3(2), 220-246, DOI: 10.1017/S1876404511200046
Khan, J. R., Saeed, M., Siddiqui, F. A., Mahmood, N., & Arifeen, Q. U. (2019). PREDICTIVE POLICING: A Machine Learning Approach to Predict and Control Crimes in Metropolitan Cities. University of Sindh Journal of Information and Communication Technology, 3(1), 17-26.
Lazer, D. (2015). The rise of the social algorithm. Science, 348(6239), 1090-1091, DOI: 10.1126/science.aab1422
Lee, Keon (2021), China's Technological Leapfrogging and Economic Catch-up, Translated by Roohollah Kohnhoosh Nejad. Tehran: Development and Foresight Research Center of the National Program and Budget Organization.
Marda, V. (2018). Artificial intelligence policy in India: a framework for engaging the limits of data-driven decision-making. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2133), 20180087, DOI: 10.1098/rsta.2018.0087
McCullough, A. (2015). The legitimacy of states and armed non-state actors: Topic guide. Birmingham, University of Birmingham.
Mikalef, P., Fjørtoft, S.O., Torvatn, H.Y. (2019). Artificial Intelligence in the Public Sector: A Study of Challenges and Opportunities for Norwegian Municipalities. In: Pappas, I.O., Mikalef, P., Dwivedi, Y.K., Jaccheri, L., Krogstie, J., Mäntymäki, M. (eds) Digital Transformation for a Sustainable Society in the 21st Century. I3E 2019. Lecture Notes in Computer Science, vol 11701. Springer, Cham. https://doi.org/10.1007/978-3-030-29374-1_22
Morandín-Ahuerma, F. Recommendation of the OECD council on artificial intelligence: inequality and inclusion1. https://www.researchgate.net/profile/Fabio-Morandin-Ahuerma/publication/374508986_Recommendation_of_the_OECD_council_on_artificial_intelligence_inequality_and_inclusion/links/6520d835fc5c2a0c3bbe316e/Recommendation-of-the-OECD-council-on-artificial-intelligence-inequality-and-inclusion.pdf
Mudde, C., & Kaltwasser, C. R. (2017). Populism: A very short introduction. Oxford University Press.
Orlikowski, W. J., & Iacono, C. S. (2001). Research commentary: Desperately seeking the “IT” in IT research—A call to theorizing the IT artifact. Information systems research, 12(2), 121-134, https://doi.org/10.1287/isre.12.2.121.9700
Osoba, O., & Welser, W. (2017). The Risks of Bias and Errors in Artificial Intelligence. Santa Monica: Rand Corporation.
Pencheva, I., Esteve, M., & Mikhaylov, S. J. (2020). Big Data and AI–A transformational shift for government: So, what next for research? Public Policy and Administration, 35(1), 24-44, DOI: 10.1177/0952076718780537
Poole, D. I., Goebel, R. G., & Mackworth, A. K. (1998). Computational intelligence (Vol. 1). New York: Oxford University Press.
Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence: foundations of computational agents. Cambridge University Press.
Pülzl, H., & Treib, O. (2017). Implementing public policy. In Handbook of public policy analysis (pp. 115-134). Routledge.
Radulescu, M., Logica, B., & Zamfiroiu, T. (2015). Forecasting public expenditure by using feed-forward neural networks. Economic research-Ekonomska istraživanja, 28(1), 668-686, DOI: 10.1080/1331677X.2015.1081828
Riahi, Y., & Riahi, S. (2018). Big data and big data analytics: Concepts, types and technologies. International Journal of Research and Engineering, 5(9), 524-528, DOI: 10.21276/ijre.2018.5.9.5
Rivera‐Batiz, F. L. (2002). Democracy, governance, and economic growth: theory and evidence. Review of Development Economics, 6(2), 225-247, DOI: 10.1111/1467-9361.00151
Rothstein, B. O., & Teorell, J. A. (2008). What is quality of government? A theory of impartial government institutions. Governance, 21(2), 165-190, DOI: 10.1111/j.1468-0491.2008.00391.x
Russell, Stuart J. & Norvig, Peter (2010), Artificial Intelligence a Modern Approach, Third Edition, Pearson Education, Inc.
Saha, S. (2008, July). Democracy and corruption: an empirical analysis in a cross-country framework. In New Zealand Association of Economist Annual Conference (pp. 9-11).
Savage, M. (2019). Meet Tengai, the job interview robot who won't judge you. BBC Oline, 12.
Scharpf, F. (2011). Governing in Europe: Effective and democratic? online edn, Oxford Academic, https://doi.org/10.1093/acprof:oso/9780198295457.001.0001
Schintler, L. A., & Kulkarni, R. (2014). Big data for policy analysis: The good, the bad, and the ugly. Review of Policy Research, 31(4), 343-348, DOI: 10.1111/ropr.12079
Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36(2), 368-383, https://doi.org/10.1016/j.giq.2018.09.008
Tito, J. (2017). Destination unknown: Exploring the impact of artificial intelligence on government. Centre for Public Impact. Disponível em: https://www. centreforpublicimpact. org/assets/documents/Destination-Unknown-AI-and-government. pdf. Acesso em, 27.
Valle-Cruz, D. (2019). Public value of e-government services through emerging technologies. International Journal of Public Sector Management, 32(5), 530-545, DOI: 10.1108/IJPSM-03-2018-0072
Valle-Cruz, D., Criado, J. I., Sandoval-Almazán, R., & Ruvalcaba-Gomez, E. A. (2020). Assessing the public policy-cycle framework in the age of artificial intelligence: From agenda-setting to policy evaluation. Government Information Quarterly, 37(4), 101509, DOI: 10.1016/j.giq.2020.101509
Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37, DOI: https://doi.org/10.2478/jagi-2019-0002
Wirtz, B. W., Weyerer, J. C., & Kehl, I. (2022). Governance of artificial intelligence: A risk and guideline-based integrative framework. Government Information Quarterly, 39(4), 101685, https://doi.org/10.1016/j.giq.2022.101685
Yogesh K. Dwivedi, Laurie Hughes, Elvira Ismagilova, Gert Aarts, Crispin Coombs, Tom Crick, Yanqing Duan, Rohita Dwivedi, John Edwards, Aled Eirug, Vassilis Galanos, P. Vigneswara Ilavarasan, Marijn Janssen, Paul Jones, Arpan Kumar Kar, Hatice Kizgin, Bianca Kronemann, Banita Lal, Biagio Lucini, Rony Medaglia, Kenneth Le Meunier-FitzHugh, Leslie Caroline Le Meunier-FitzHugh, Santosh Misra, Emmanuel Mogaji, Sujeet Kumar Sharma, Jang Bahadur Singh, Vishnupriya Raghavan, Ramakrishnan Raman, Nripendra P. Rana, Spyridon Samothrakis, Jak Spencer, Kuttimani Tamilmani, Annie Tubadji, Paul Walton, Michael D. Williams, Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy, International Journal of Information Management, Volume 57, 2021, 101994, https://doi.org/10.1016/j.ijinfomgt.2019.08.002
Kohanhoosh Nejad, R. (2024). Governance with Artificial Intelligence. Iranian Journal of Public Policy, 10(2), 173-186. doi: 10.22059/jppolicy.2024.98290
MLA
Roohollah Kohanhoosh Nejad. "Governance with Artificial Intelligence", Iranian Journal of Public Policy, 10, 2, 2024, 173-186. doi: 10.22059/jppolicy.2024.98290
HARVARD
Kohanhoosh Nejad, R. (2024). 'Governance with Artificial Intelligence', Iranian Journal of Public Policy, 10(2), pp. 173-186. doi: 10.22059/jppolicy.2024.98290
VANCOUVER
Kohanhoosh Nejad, R. Governance with Artificial Intelligence. Iranian Journal of Public Policy, 2024; 10(2): 173-186. doi: 10.22059/jppolicy.2024.98290