کارکردهای پردازش زبان طبیعی در سیاستگذاری مبتنی بر شواهد

نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار سیاستگذاری علم و فناوری، پژوهشکده جامعه و اطلاعات، پژوهشگاه علوم و فناوری اطلاعات ایران (ایرانداک)، تهران، ایران

10.22059/jppolicy.2025.102508

چکیده

با افزایش سرعت پیچیدگی و پیشرفت‌های علمی و فناوری، استفاده از قابلیت‌های هوش مصنوعی و به طور ویژه پردازش زبان طبیعی برای تقویت سیاستگذاری مبتنی بر شواهد، حصول اطمینان از حکمرانی آگاهانه‌تر، پاسخگوتر و مؤثرتر به یک نیاز فوری تبدیل شده است. در همین راستا، هدف این پژوهش بررسی نقش‌ها و کارکردهای پردازش زبان طبیعی در سیاستگذاری مبتنی بر شواهد است. این مطالعه با استفاده از یک روش تحقیق ساختاریافته دو مرحله‌ای، ابتدا کارکردهای سیاستی کلیدی پردازش زبان طبیعی را از طریق بررسی ادبیات موضوع و تحلیل مضمون شناسایی و دسته‌بندی می‌کند. سپس، با استفاده از روش تحلیل تطبیقی پایدار، یک چارچوب مفهومی را برای نگاشت این کارکردهای سیاستی به گام‌های گوناگون فرآیند سیاستگذاری مبتنی بر شواهد، توسعه می‌دهد. این پژوهش پنج کارکرد اصلی پردازش زبان طبیعی در سیاستگذاری مبتنی بر شواهد را شناسایی می‌کند که عبارتند از تجزیه و تحلیل داده‌های متنی و استخراج اطلاعات، تجزیه و تحلیل بازخورد ذینفعان، کاوش ادبیات و نظرات کارشناسان، ارزیابی تأثیر سیاست‌ها و تحلیل گفتمان عمومی. این کارکردها، مراحل مختلف سیاستگذاری مبتنی بر شواهد را تقویت می‌کنند. چارچوب حاصل نشان می‌دهد که چگونه پردازش زبان طبیعی می‌تواند قابلیت‌های انسانی را در طول چرخه سیاستگذاری مبتنی بر شواهد تقویت کند که به طور بالقوه این امر منجر به حکمرانی داده‌محور، پاسخگوتر و شفاف‌تر در حوزه‌های علم و فناوری می‌شود. این مطالعه به تقویت نظری مطالعات سیاستگذاری و حکمرانی هوش مصنوعی کمک می‌کند و بینش‌های عملی را برای سیاستگذاران و مدیران ارائه می‌دهد.

کلیدواژه‌ها


  1. Ashford, L. S., Smith, R. R., De Souza, R. M., Fikree, F. F., & Yinger, N. V. (2006). Creating windows of opportunity for policy change: incorporating evidence into decentralized planning in Kenya. Bulletin of the World Health Organization, 84(8), 669-672.
  2. Ahn, N. (2017). Comparing NLP methods for identifying policy decisions in government documents. Poliinformatics of Lawmaking. https://natalieahn.github.io/Ahn_PINet.pdf
  3. Brescia, W. F., Swartz, J., Pearman, C., Balkin, R., & Williams, D. (2004). Peer teaching in web-based threaded discussions. Journal of Interactive Online Learning, 3(2), 1-22.
  4. Babatunde, I. D. Enhancing Contract Management through Natural Language Processing (NLP): A Case Study of Three African Countries. In Deep Learning Indaba 2023. file:///C:/Users/98912/Downloads/Formatting_Instructions_For_DLI_2023_Accra__Ghana2.pdf
  5. Boeije H. (2002). A Purposeful Approach to the Constant Comparative Method in the Analysis of Qualitative Interviews, Quality & Quantity, 36, 391–409.
  6. Braun, V., & Clarke, V. (2023). Toward good practice in thematic analysis: Avoiding common problems and be (com) ing a knowing researcher. International journal of transgender health, 24(1), 1-6.
  7. Cairney, P. (2016). The politics of evidence-based policymaking. Palgrave Macmillan.
  8. Edwards, M. (2005). Social science research and public policy: narrowing the divide 1. Australian Journal of Public Administration, 64(1), 68-74.
  9. Gokhberg, L. (2020). Use AI to mine literature for policymaking. Nature, 583(7816), 360-360. doi: https://doi.org/10.1038/d41586-020-02086-x
  10. Gray, J. M. (2008). 13 Evidence-based policy making. Getting Research Findings into Practice, 154. https://doi.org/10.1002/9780470755891.ch13
  11. Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political analysis, 21(3), 267-297. 10.1093/pan/mps028
  12. Höchtl, J., Parycek, P., & Schöllhammer, R. (2016). Big data in the policy cycle: Policy decision making in the digital era. Journal of Organizational Computing and Electronic Commerce, 26(1-2), 147-169. 10.1080/10919392.2015.1125187
  13. Hutto, C., & Gilbert, E. (2014, May). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In Proceedings of the international AAAI conference on web and social media (Vol. 8, No. 1, pp. 216-225). https://doi.org/10.1609/icwsm.v8i1.14550
  14. Hovy, D., & Spruit, S. L. (2016, August). The social impact of natural language processing. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 591-598). https://www.semanticscholar.org/paper/The-Social-Impact-of-Natural-Language-Processing-Hovy-Spruit/6a0388c46f2aff013343fdafaaffacf56a315915
  15. Hornby, P. and Perera, H.S.R. (2002) A development framework for promoting evidence‐based policy action: drawing on experiences in Sri Lanka. The International Journal of Health Planning and Management 17(2), 165‐183.
  16. Jacobi, C., van Atteveldt, W., & Welbers, K. (2016). Quantitative analysis of large amounts of journalistic texts using topic modelling. Digital Journalism, 4(1), 89-106. https://doi.org/10.1080/21670811.2015.1093271
  17. Jin, Z., & Mihalcea, R. (2022). Natural language processing for policymaking. In Handbook of Computational Social Science for Policy (pp. 141-162). Cham: Springer International Publishing.
  18. Kingdon, J. W. (1996) Young, E., & Quinn, L. (2002). Writing effective public policy papers. Open Society Institute, Budapest.
  19. Lim MG, Sandra. (2023). Unlocking the Power of Evidence-Based Policy-Making Series: Integrating Research with Artificial Intelligence. Retrieved from https://medium.com/@sandralmg03/unlocking-the-power-of-evidence-based-policy-making-series-integrating-research-with-artificial-89ae1dde5723
  20. Miao, F., & Holmes, W. (2021). Artificial Intelligence and Education. Guidance for Policy-makers. Retrieved from https://discovery.ucl.ac.uk/id/eprint/10130180/1/Miao%20and%20Holmes%20-%202021%20-%20AI%20and%20education%20guidance%20for%20policy-makers.pdf
  21. Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46-60. https://doi.org/10.1016/j.futures.2017.03.006
  22. Mehr, H., Ash, H., & Fellow, D. (2017). Artificial intelligence for citizen services and government. Ash Cent. Democr. Gov. Innov. Harvard Kennedy Sch., no. August 1-12. https://ash.harvard.edu/wp-content/uploads/2024/02/artificial_intelligence_for_citizen_services.pdf
  23. Meloche, R. (2023). Formalizing Contract Refinements Using a Controlled Natural Language (Doctoral dissertation, Université d'Ottawa/University of Ottawa). https://ruor.uottawa.ca/server/api/core/bitstreams/a0297af1-9a59-4c1c-86a7-cade4d96869e/content
  24. Marwala, T. (2023). Natural language processing in politics. In Artificial intelligence, game theory and mechanism design in politics (pp. 99-115). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5103-1_7
  25. Naderi, N., & Hirst, G. (2017). Classifying frames at the sentence level in news articles. Policy, 9, 4-233. https://www.cs.toronto.edu/pub/gh/Naderi+Hirst-Frames-RANLP-2017.pdf
  26. Neumann, M., King, D., Beltagy, I., & Ammar, W. (2019). ScispaCy: fast and robust models for biomedical natural language processing. arXiv preprint arXiv:1902.07669. https://doi.org/10.48550/arXiv.1902.07669
  27. Newman, J., & Mintrom, M. (2023). Mapping the discourse on evidence-based policy, artificial intelligence, and the ethical practice of policy analysis. Journal of European Public Policy, 1-21. https://doi.org/10.1080/13501763.2023.2193223
  28. Nutley, S., Davies, H., & Walter, I. (2002). Evidence based policy and practice: Cross sector lessons from the UK (Vol. 9). Swindon: ESRC UK Centre for Evidence Based Policy and Practice. file:///C:/Users/98912/Downloads/Evidence_Based_Policy_and_Practice_Cross_Sector_Le.pdf
  29. O'Dwyer, L. (2004). A critical review of evidence-based policymaking. https://www.semanticscholar.org/paper/Evidence-based-policymaking%3A-A-review-Strydom-Funke/edf9b2ab11837290189f86d372adf31ff00cbe10
  30. Parkhurst, J. (2017). The politics of evidence: from evidence-based policy to the good governance of evidence (p. 182). Taylor & Francis. https://doi.org/10.4324/9781315675008
  31. Perini, D. J., Batarseh, F. A., Tolman, A., Anuga, A., & Nguyen, M. (2023). Bringing dark data to light with AI for evidence-based policymaking. In AI Assurance (pp. 531-557). Academic Press. DOI: 10.1016/B978-0-32-391919-7.00030-5
  32. Peng, Y., & Dredze, M. (2015). Named entity recognition for Chinese social media with jointly trained embeddings. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 548-554). https://www.semanticscholar.org/paper/Named-Entity-Recognition-for-Chinese-Social-Media-Peng-Dredze/d64561879a2fbd3d39a5e876a667ffa4561eed80
  33. Prabhakaran, V., Arora, A., & Rambow, O. (2014, October). Staying on topic: An indicator of power in political debates. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1481-1486). https://www.semanticscholar.org/paper/Staying-on-Topic%3A-An-Indicator-of-Power-in-Debates-Prabhakaran-Arora/469a4152eeeda5ed2c4a9ef64c9d94ed881d57e8
  34. Ranjan, M., Tiwari, S., Sattar, A. M., & Tatkar, N. S. (2024). A New Approach for Carrying Out Sentiment Analysis of Social Media Comments Using Natural Language Processing. Engineering Proceedings, 59(1), 181. https://doi.org/10.3390/engproc2023059181
  35. Sim, Y., Acree, B. D., Gross, J. H., & Smith, N. A. (2013). Measuring ideological proportions in political speeches. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (pp. 91-101). https://homes.cs.washington.edu/~nasmith/papers/sim+acree+gross+smith.emnlp13-supp.pdf
  36. Smith, T. B., Vacca, R., Mantegazza, L., & Capua, I. (2021). Natural language processing and network analysis provide novel insights on policy and scientific discourse around Sustainable Development Goals. Scientific reports, 11(1), 22427. https://doi.org/10.1038/s41598-021-01801-6
  37. Sutherland, W. J., & Burgman, M. (2015). Policy advice: use experts wisely. Nature, 526(7573), 317-318. file:///C:/Users/98912/Downloads/526317a.pdf
  38. Taeihagh, A. (2021). Governance of artificial intelligence. Policy and society, 40(2), 137-157. https://doi.org/10.1080/14494035.2021.1928377
  39. Upreti, K., Verma, A., Mittal, S., Vats, P., Haque, M., & Ali, S. (2023, June). A Novel Framework for Harnessing AI for Evidence-Based Policymaking in E-Governance Using Smart Contracts. In International Conference on Advanced Communication and Intelligent Systems (pp. 231-240). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-45124-9_18
  40. van der Voorn, T., Quist, J., Pahl-Wostl, C., & Haasnoot, M. (2017). Envisioning robust climate change adaptation futures for coastal regions: a comparative evaluation of cases in three continents. Mitigation and Adaptation Strategies for Global Change, 22, 519-546. DOI 10.1007/s11027-015-9686-4
  41. Wirjo, A., Calizo,S., Nino Vasquez, G., & San Andres, E. A.(2022). Artificial Intelligence in Economic Policymaking. APEC Policy Support Unit. Retrieved from https://www.apec.org/publications/2022/11/artificial-intelligence-in-economic-policymaking
  42. Wyner, A., & Van Engers, T. (2010). A framework for enriched, controlled on-line discussion forums for e-government policymaking. na. file:///C:/Users/98912/Downloads/A_framework_for_enriched_controlled_on-line_discus.pdf
  43. Young, E., & Quinn, L. (2002). Writing effective public policy papers. Open Society Institute, Budapest. https://www.nccmt.ca/registry/resource/pdf/94.pdf
  44. Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural language processing. ieee Computational intelligenCe magazine, 13(3), 55-75. 10.1109/MCI.2018.2840738
  45. Yaros, O., Bruder, A., Hajda, O., & Graham, E. 2021. The European Union proposes new legal framework for AI. Mayer Brown, May, 5. https://www.mayerbrown.com/en/perspectives-events/publications/2021/05/the-european-union-proposes-new-legal-framework-for-artificial-intelligence.
  46. Zhang, Y., Shah, D., Foley, J., Abhishek, A., Lukito, J., Suk, J., ... & Garlough, C. (2019). Whose lives matter? Mass shootings and social media discourses of sympathy and policy, 2012–2014. Journal of Computer-Mediated Communication, 24(4), 182-202. https://doi.org/10.1093/jcmc/zmz009